Skip to main content

Contact

Comments

Popular posts from this blog

The AI method - Gigaminx Tutorial

Introduction The Gigaminx is a great puzzle to solve, especially if it's a well-turning puzzle. Nevertheless, the solve of the Gigaminx, Teraminx etc. can get boring after a while. It consists of 12 centers which need to be reduced, each in the same way. Same story for the 30 edges. This is still reasonable on the Gigaminx, but can get tedious on higher order minx-puzzles. This tutorial might get rid of your daily searches for fun in the solving experience of puzzles of this kind. There are 2 thing I assume you know when you start this exciting adventure: you're able to solve a Megaminx and you're familiar with the AI reduction method. If the latter sounds foreign to you, you might want to consider checking out this  article which explains this approach on a 4x4, or you can consult my 4x4 AI tutorial . Approach Reducing a 5x5 to a 3x3 with the AI method is no different than reducing a 4x4 to a 2x2. The only difference lies within the edges. Therefore, redu

Tuttminx

Concept The Tuttminx, desinged by Lee Tutt in 2005 and mass-produced by Verypuzzle 6 years later. Verypuzzle has made 3 designs so far, each one getting rid of a particular issue. The idea and geometric design of the shape can me simply put: it's the extension of a dodecahedron to a truncated icosahedron. (Maybe a bit easier: it's a football). Its surface consists of 12 pentagons and 20 hexagons, which makes 32 sides in total. But despite this massive amount of sides to wrap your head around, the puzzle isn't actually that hard compared to other puzzles which may seem easier at the start. It's a non-jumbling puzzle, which means that every piece lands into a spot it's supposed to land into, it doesn't get out of orbit  (although I find this term rather deceptive). The previous versions of the Verypuzzle production were able to jumble, although this was never intended. Their last design got rid of this problem, altough it's still possible with the rig

The AI method - 4x4x4 Tutorial

Introduction The AI reduction method is basically the reduction of a 4x4 to a 2x2. This way of reducing implies no parity. The basic AI concept and the reason for this lack of parity is explained in this article . There are actual AI Cubes on the market, but this is not necessary for this kind of reduction. You can use a standard 4x4x4 cube and reduce the first two layers using the layer by layer method or as 4 corner blocks. You can apply Step 1 four times to get the latter done. After this is done (if you don't have an AI Cube) you can start with the tutorial below.  Furthermore, the only 2 things you need to know before starting this tutorial is (1) how to solve a standard 2x2x2 and (2) these two algorithms:  Rotating corner block: ( R' D' R D) (R' D' R D) Corner swap: ( 2R U 2R U' 2R) U' D (2R U' 2R U 2R) D' These algorithms should be executed by pretending you're dealing with a 2x2x2, thus turning two layers. The cube used